Genomic selection
also known as

Genomewide selection
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Genomic selection

GS uses all molecular markers to
predict genomic estimated breeding

values (GEBV). A
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Genomic selection
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Genomic selection
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Genomic selection

University of Minnesota

* Are interested in go deeper in GS basic
model?

REX BERNARDO

Breeding for
Quantitative Traits
in Plants

4
Third Editidn ¢
¢

https://www.youtube.com/watch?v=07KYISOZhZo&t=1939s



MAS vs GS

A multiple regression model in which marker
effects were estimated with ordinary least
squares (OLS)

Ridge regression best linear unbiased prediction
(RR-BLUP)

markers > population size

h? and number of molecular markers to
set the phenotypic variance that can be
explained in the model
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MAS vs GS

Schemes of GS and traditional
MAS for the selection of
quantitative traits (right).
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GS Models
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In general, different genomic selection models

tend to have similar predictive ability.
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Population structure

1180 polymorphic markers
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Framework for GS
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Framework for GS

Marker Effects Predicted Genomic Values Vs Phenotypes
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GS vs traditional breeding

Across eight populations Five WEMA populations’
Entries GY AD PH GY AD PH
Mg ha™ days cm Mg ha™ days cm
G, 2.286 63.910 179.900 2.212 64.060 174.300
C, 2.420 64.080 181.900 2.482 64.160 178.100
C2 2.438 64.410 184.600 2.474 64.160 179.400
C, 2.593 64.100 182,200  2.581 63.730 175.600
Pedigree 2.417 64.400 181700 2417 64.400 181.700 |
F, 2.394 63.930 175.600  2.394 63.930 175.600
Parents 2.361 64.000 178.400  2.431 63.950 176.600
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GS is not the solution of all our problems
..but it is helpful

* Reduce breeding cycle AG i To[ O
* Increase selection intensity e L
* Increase genetic variance 1 = Selection intensity

r.. = Accuracy
e Reduce costs Al y
G = Genetic standard deviation

[. = Generation interval

In the next presentation we are going to talk about it!



