- Gene pool
- Allele Frequencies
- Hardy-Weinberg Equilibrium
- HW assumptions
- Testing for HW
- Inbreeding

• Gene pool

- Allele Frequencies
- Hardy-Weinberg Equilibrium
- HW assumptions
- Testing for HW
- Inbreeding

Gene pools

- A gene pool is the collection of different *genes* within a population.
- Gene pool is the sum of all the *alleles* at all of the genes of a population.

Gene pools

- A gene pool is the collection of different *genes* within a population.
- Gene pool is the sum of all the *alleles* at all of the genes of a population.

Gene pools

- Gene pool
- Allele Frequencies
- Hardy-Weinberg Equilibrium
- HW assumptions
- Testing for HW
- Inbreeding

Allele Frequencies

• Consider a locus with two possible alleles (A and a)

A = p, a = q

• We can estimate the frequency of AA genotype by dividing the number of AA individuals by total number of individuals in the population.

$$AA + Aa + aa = 1$$

• Allele Frequencies:

 $p = f(AA) + \frac{1}{2}f(Aa) = frequency of A$

q= f(aa) + $\frac{1}{2}$ f(Aa) = 1 - p frequency of a

- Gene pool
- Allele Frequencies
- Hardy-Weinberg Equilibrium
- HW assumptions
- Testing for HW
- Inbreeding

Hardy-Weinberg Equilibrium

 $p^2 + 2pq + q^2 = 1$

 p^2 = dominant homozygous frequency (AA) 2pq = heterozygous frequency (Aa) q^2 = recessive homozygous frequency (aa)

Expected genotype frequencies (random mating) $p(AA)=p^2$, pq(Aa)=2pq, $q(aa)=q^2$

p= f(AA) +
$$\frac{1}{2}$$
 f (Aa) = frequency of A
p = (3/14) + $\frac{1}{2}$ (8/14) = 0.5
q = 1-0.5 = 0.5

aa = 3

Aa = 8

$$AA = 3$$

Hardy-Weinberg Equilibrium

N = 14, AA = 3 , Aa = 8, aa = 3

p = 0.5 q = 0.5

Expected genotype frequencies :

 $p(AA)=p^2$, p(Aa)=2pq, $p(aa)=q^2$

$$p^2$$
 + 2pq + q²
0.5² + 2(0.5*0.5) + 0.5² = 0.25, 0.5, 0.25

- Gene pool
- Allele Frequencies
- Hardy-Weinberg Equilibrium
- HW assumptions
- Testing for HW
- Inbreeding

Hardy-Weinberg assumptions

- Random mating
- Population must not be divided into subpopulations
- Apply only to large populations
- No migration
- No mutation
- No selection

If any of these assumptions is not true, the population could departure from HWE.

These departures in most cases manifest as an excess of homozygosity relative to HWE.

Hardy-Weinberg equilibrium

	Genoty	pe frequ	Gene frequencies		
Generation	A/A	A/a	a/a	A	a
t_0	0.64	0.32	0.04	0.8	0.2
t ₁	0.64	0.32	0.04	0.8	0.2
• Hardy-Wei	nberg Equ		N-1078		
t_n	0.64	0.32	0.04	0.8	0.2

Genetic variation is neither created nor destroyed

- Gene pool
- Allele Frequencies
- Hardy-Weinberg Equilibrium
- HW assumptions
- Testing for HW
- Inbreeding

• Genes out of expected proportions indicate that at least one of the HW assumptions is not true.

Banged South and Sta	enzedo mas			
aligners permit	A/A	A/G	G/G	Sum
Observed number	17	55	12	84
Observed frequency	0.202	0.655	0.143	1
Expected frequency	0.281	0.498	0.221	1
Expected number	23.574	41.851	18.574	84
(Observed - expected) ² /expected	1.833	4.131	2.327	8.29

$$X^2 = \sum \frac{(O-E)^2}{E}$$

Source: International HapMap Project (www.hapmap.org).

Observed frequency $p^2 = 17/84 = 0.202$ 2pq = 55/84 = 0.655 $q^2 = 12/84 = 0.143$ $p = f(AA) + \frac{1}{2}f(AG) = 0.202 + \frac{1}{2}0.655 = 0.53$ q = 1-p = 0.47

Expected	d freq	uency			
p ²	+	2pq	+	q ²	= 1
0.53 ²	+	2 (0.53*0.47)	+	0.47 ²	
0.281	+	0.498	+	0.221	= 1

Bang ad Source and the	and the man	Genotypes					
	A/A	A/G	G/G	Sum			
Observed number Observed frequency	17 0.202	55 0.655	12 0.143	84 1			
Expected frequency Expected number	0.281 23.574	0.498 41.851	0.221 18.574	1 84			
(Observed - expected) ² /expected	1.833	4.131	2.327	8.29			
Source: International HapMap Project (w	ww.hapmap.o	rg).	Not the second s				

$$X^{2} = \sum \frac{(O-E)^{2}}{E} = (17 - 23.574)^{2}/23.574 = 1.833$$

Edite of some or the	Service And			
	A/A	A/G	G/G	Sum
Observed number Observed frequency	17 0.202	55 0.655	12 0.143	84 1
Expected frequency Expected number	0.281 23.574	0.498 41.851	0.221 18.574	1 84
(Observed - expected) ² /expected	1.833	4.131	2.327	8.29

	Degree of	ree of Probability of Exceeding the Critical Value								
	Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
We use 1 df	1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
	2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
	3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
	4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
	5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
	6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
	7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
	8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
	9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
	10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21

Sum
84
-Bt slder 1
1
84
8.29

We use 1 df

surver international maphiap mobile (in in intaphiap.org).

Degree of	Probability of Exceeding the Critical Value									
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01	
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63	
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21	
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34	
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28	
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09	
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81	
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48	
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09	
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67	
10	2.558	3,940	4.865	6.737	9.342	12.55	15.99	18.31	23.21	

Hardy-Weinberg assumptions

- Random mating
- Population must not be divided into subpopulations
- Apply only to large populations
- No migration
- No mutation
- No selection
- No drift

If any of these assumptions is not true, the population could departure from HWE.

These departures in most cases manifest as an excess of homozygosity relative to HWE.

Hardy-Weinberg assumptions

• Random mating

- Population must not be divided into subpopulations
- Apply only to large populations
- No migration
- No mutation
- No selection
- No drift

If any of these assumptions is not true, the population could departure from HWE.

These departures in most cases manifest as an excess of homozygosity relative to HWE.

Bias in mate choice: isolation by distance

http://academygenbioii.pbworks.com/

Bias in mate choice: assortative mating

en.ppt-online.org

Bias in mate choice: inbreeding

www.slideshare.net

Inbreeding or mating between relatives!

Review

Graphical Representation of the Hardy-Weinberg Principle

- Gene pool
- Allele Frequencies
- Hardy-Weinberg Equilibrium
- HW assumptions

